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Social Learning

Numerous situations in which we try to learn from others’ actions
Knowing a film is successful is informative about its quality and genre (unlikely to
be awful, but also unlikely to be an indie film)

Seeing price of a stock going up: infer more positive outlook on firm’s
fundamentals more likely.

Product purchases, migration decisions, bachelor choices, technology adoption,
take-up of microfinance, etc.

Can the crowd get it wrong? When?
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Setup

Basic Ingredients
θ ∈ Θ unknown parameter; θ ∼ PΘ.
Action: Each agent n takes action an ∈ A ⊆ R.
Public History: ht := {aℓ, ℓ < t}, h0 = ∅.
Payoffs: u(an, θ, rn); Type: Agent n’s type rn; R types.
Private Information: Each agent n has private information about θ.

Important how large A; coarser set restricts how much info conveyed.

Examples
Binary Actions: Θ = {H, L}, A = {0, 1}, e.g. buy/invest/adopt/migrate/etc vs don’t.
WLOG u(a, θ, r) := a(1{θ=H} – r).

Gaussian-Quadratic: Θ = A = R, e.g., predict variable: u(a, θ, r) := –(θ – a)2 or
investment problem u(a, θ, r) := 2θa – a2.
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Setup

Private and Public Information:
Private Signal: sn ∼ PS(· | θ) iid (conditional on θ); p0n(θ) ∝ p0(θ)PS(sn | θ).

p0n = fp(sn), sn ∼ PS(· | θ); hence p0n ∼ PP(· | θ) for some PP s.t. E[p0n ] = PΘ.
Private Belief: p0n ∼ PP.
Public Belief: qt(θ) = P(θ | ht).

π(ht | θ) := P(ht | θ); qt(θ) ∝ p0(θ)π(ht | θ).
Private Posterior Belief: Private belief + updating based on public history.
pt(θ) ∝ p0(θ)PS(st | θ)π(ht | θ) = qt(θ)p0t (θ)/p0(θ).
Updating mapping BU : (p0t , qt) 7→ BU(p0t , qt) = pt.

Timing: Within each period t:
1. Agent t observes private signal sn and forms interim private belief p0t .
2. Agent observes public history ht = (aℓ, ℓ < t) and forms private posterior belief pt.
3. Agent t takes action at.

wPBE (focusing on on-path)
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Herd, Cascade

Definition

(i) Actions converge if
∑

t at/t → a∞ for some a∞ ∈ A.

(ii) A herd occurs at t if, given the public belief, agent t’s optimal action is the same
as agent (t – 1)’s.

(iii) A herd starts at T if it occurs at any t ≥ T.

(iv) A cascade occurs at t if, given the public belief, agent t’s optimal action is a.s.
independent of t private signal.

(v) A cascade starts at T if it occurs at any t ≥ T.

(vi) A cascade that occurs at ∞ is a limit cascade.

Remark

Cascade in finite time =⇒ Limit cascade, Herd in finite time =⇒ Actions converge.
If A finite, Limit cascade =⇒ Herd in finite time.
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Warm-Up: Gaussian-Quadratic Model

u(a, θ) = –(θ – a)2; θ ∼ N(θ0, ρ–1
θ ); st = θ + εt; εt ∼ N(0, ρ–1

ε ) iid; indep. from θ.

Public Belief: N(µt, ρ–1
t ).

Posterior Belief = Private Signal + Public Belief: N(µ̃t, ρ̃–1
t )

µ̃t = (1 – wt)µt + wtst; ρ̃t = ρt + ρε; wt = ρε/ρ̃t.

Conditional on posterior belief, at = argmaxa E[u(a, θ) | ht, st] = E[θ | ht, st] = µ̃t.

Social Learning: As µt, at,wt are known, agent t + 1 can infer st = (at – (1 – wt)µt)/wt
=⇒ µt+1 = µ̃t and ρt+1 = ρ̃t.

As at = µt =
ρθ

ρt
θ0 + tρε

ρt

∑
ℓ≤t sℓ → θ a.s. =⇒ learning is complete.

No herd, no cascade in finite time.

Imitation: E[|at – at–1|] = wtE[|st – at–1|] → 0: actions more similar over time.

Heterogeneity: u(a, θ, r) = –(θ + r – a)2, r ∼ N(0, ρ–1
r ); results hold, but learning slower.
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Warm-Up: Gaussian-Quadratic Model

Costly signal: u(a, θ) = –(θ – a)2 – c(ρε); c ≥ 0, c′ > 0, c′′ > 0.

Claim: Social learning stops in finite time, i.e.,
∃T < ∞ : ∀t > T, ρt = ρT ⇐⇒ ρε,t = 0.

• E[u(at, θ) | ht, st] = –E[(θ – E[θ | ht, st])2 | ht, st] – c(ρε,t) = –(ρt + ρε,t)–1 – c(ρε,t).
FOC: 0 = (ρt + ρε,t)–2 – c′(ρε,t).

• Then: ρ
–2
t ≤ c′(0) =⇒ (ρt + ρε,t)

–2 – c′(ρε,t) ≤ ρ
–2
t – c′(ρε,t) ≤ 0 =⇒ ρε,t = 0.

• c′(ρε,t–1) = (ρt–1 + ρε,t–1)–2 = ρ
–2
t ≥ (ρt + ρε,t)–2 = c′(ρε,t)

=⇒ ρε,t decreasing in t.
• Suppose that ρε,t ≥ δ ∀t. Then, ∃T : ∀t ≥ T,

ρt = ρ0 +
∑t–1

ℓ=1 ρε,ℓ ≥ ρ0 + (t – 1) ≥ c′(0)–1/2 =⇒ ρε,t = 0, contradiction.

Gonçalves (UCL) Social Learning 6
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Crashes and Booms

Adjustment to economic shock tends to be first slow and then abrupt (e.g., a market
crash). Why?

Model sketch: population every period takes irreversible investment decisions; start
with high public confidence in ‘good times’ but state is bad.
Sigmoid-shaped adjustment of beliefs from social learning to change in state
features:
(1) slow evolution (somewhat business as usual),
(2) fast adjustment to new reality (negative shock), and
(3) stabilising around ‘new normal’.

Caplin and Leahy (1994 AER); Chamley (2010 Ch. 4.6).

Fast changing state would temper these abrupt changes.
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Overview

1. Social Learning: Checking Neighbours’ Crop Yields

2. Warm-Up: Gaussian-Quadratic Model

3. Information Cascades
– Setup
– Social Learning
– Cascades
– Robustness of Cascades

4. Further Topics



Setup

Version of Bikchandani, Hirschleifer, and Welch (1992 JPE).
(but using martingale tools employed by Smith and Sørensen (2000 Ecta).)

Setup
State: θ ∈ Θ = {H, L}, p0 = P(θ = H) ∈ (0, 1).
Signal: sn ∈ S = {1, 2, ...,NS}; sn ∼ PS(· | θ). Assume PS(s | θ) > 0 ∀s, θ.
(No fully revealing signals with positive probability.)

Order signals: PS(1|H)
PS(1|L)

< · · · < PS(NS |H)
PS(NS |L)

.
MLRP WLOG when |Θ| = 2; strict MLRP: bundle signals with same likelihood
together.

Payoffs: u(a, θ, r) := a(1{θ=H} – r). Tie-breaking: Invest iff belief θ = H > r.
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Setup
Cascade Sets and Other Definitions

Public History: ht = (aℓ)ℓ<t; h0 = ∅.

Public Belief: qt =
p0π(ht |H)

p0π(ht |H)+(1–p0)π(ht |L)
.

Private Interim Belief: p0t (s) =
p0PS(s|H)

p0PS(s|H)+(1–p0)PS(s|L)
. p0t ∼ PP.

Let b := inf supp(PP) > 0 and b̄ := sup supp(PP) < 1. (Recall: finite S.)
Private Posterior Belief:
pt(s) =

qtPS(s|H)
qtPS(s|H)+(1–qt)PS(s|L)

= qt p0
t /p0

qt p0
t /p0+(1–qt) (1–p0

t )/(1–p0)
=: BU(p0t , qt).

Action a’s Basin: Ira := {p ∈ [0, 1] | a = min(argmaxa′ p u(a′,H, r) + (1 – p) u(a′, L, r))}.
∃0 = p̂0 < p̂1 < p̂2 = 1 : Ir0 = [p̂0, p̂1], Ir1 = (p̂1, p̂2].
(Argument extends beyond binary actions)

Cascade Set for a: set of public beliefs at which agent chooses a regardless of
private information.
Jra := {q | BU(p, q) ∈ Ira, ∀p ∈ supp(PP)}.
∃0 = q̂r,–0 < q̂r,+0 < q̂r,–1 < q̂r,+1 = 1 : Jr0 = [q̂r,–0 , q̂r,+0 ] and Jr1 = (q̂r,–1 , q̂r,+1 ],
with BU(b, q̂r,–a ) = p̂ra and BU(b̄, q̂r,+a ) = p̂ra+1.
q ∈ Jra ⇐⇒ p̂a ≤ BU(b, q) < BU(p0, q) = q < BU(b̄, q) ≤ p̂a+1 =⇒ Jra ⊆ int(Ira).

Define Jr := ∪aJra.

Gonçalves (UCL) Social Learning 11



Setup
Cascade Sets and Other Definitions

Public History: ht = (aℓ)ℓ<t; h0 = ∅.

Public Belief: qt =
p0π(ht |H)

p0π(ht |H)+(1–p0)π(ht |L)
.

Private Interim Belief: p0t (s) =
p0PS(s|H)

p0PS(s|H)+(1–p0)PS(s|L)
. p0t ∼ PP.

Let b := inf supp(PP) > 0 and b̄ := sup supp(PP) < 1. (Recall: finite S.)

Private Posterior Belief:
pt(s) =

qtPS(s|H)
qtPS(s|H)+(1–qt)PS(s|L)

= qt p0
t /p0

qt p0
t /p0+(1–qt) (1–p0

t )/(1–p0)
=: BU(p0t , qt).

Action a’s Basin: Ira := {p ∈ [0, 1] | a = min(argmaxa′ p u(a′,H, r) + (1 – p) u(a′, L, r))}.
∃0 = p̂0 < p̂1 < p̂2 = 1 : Ir0 = [p̂0, p̂1], Ir1 = (p̂1, p̂2].
(Argument extends beyond binary actions)

Cascade Set for a: set of public beliefs at which agent chooses a regardless of
private information.
Jra := {q | BU(p, q) ∈ Ira, ∀p ∈ supp(PP)}.
∃0 = q̂r,–0 < q̂r,+0 < q̂r,–1 < q̂r,+1 = 1 : Jr0 = [q̂r,–0 , q̂r,+0 ] and Jr1 = (q̂r,–1 , q̂r,+1 ],
with BU(b, q̂r,–a ) = p̂ra and BU(b̄, q̂r,+a ) = p̂ra+1.
q ∈ Jra ⇐⇒ p̂a ≤ BU(b, q) < BU(p0, q) = q < BU(b̄, q) ≤ p̂a+1 =⇒ Jra ⊆ int(Ira).

Define Jr := ∪aJra.

Gonçalves (UCL) Social Learning 11



Setup
Cascade Sets and Other Definitions

Public History: ht = (aℓ)ℓ<t; h0 = ∅.

Public Belief: qt =
p0π(ht |H)

p0π(ht |H)+(1–p0)π(ht |L)
.

Private Interim Belief: p0t (s) =
p0PS(s|H)

p0PS(s|H)+(1–p0)PS(s|L)
. p0t ∼ PP.

Let b := inf supp(PP) > 0 and b̄ := sup supp(PP) < 1. (Recall: finite S.)
Private Posterior Belief:
pt(s) =

qtPS(s|H)
qtPS(s|H)+(1–qt)PS(s|L)

= qt p0
t /p0

qt p0
t /p0+(1–qt) (1–p0

t )/(1–p0)
=: BU(p0t , qt).

Action a’s Basin: Ira := {p ∈ [0, 1] | a = min(argmaxa′ p u(a′,H, r) + (1 – p) u(a′, L, r))}.
∃0 = p̂0 < p̂1 < p̂2 = 1 : Ir0 = [p̂0, p̂1], Ir1 = (p̂1, p̂2].
(Argument extends beyond binary actions)

Cascade Set for a: set of public beliefs at which agent chooses a regardless of
private information.
Jra := {q | BU(p, q) ∈ Ira, ∀p ∈ supp(PP)}.
∃0 = q̂r,–0 < q̂r,+0 < q̂r,–1 < q̂r,+1 = 1 : Jr0 = [q̂r,–0 , q̂r,+0 ] and Jr1 = (q̂r,–1 , q̂r,+1 ],
with BU(b, q̂r,–a ) = p̂ra and BU(b̄, q̂r,+a ) = p̂ra+1.
q ∈ Jra ⇐⇒ p̂a ≤ BU(b, q) < BU(p0, q) = q < BU(b̄, q) ≤ p̂a+1 =⇒ Jra ⊆ int(Ira).

Define Jr := ∪aJra.

Gonçalves (UCL) Social Learning 11



Setup
Cascade Sets and Other Definitions

Public History: ht = (aℓ)ℓ<t; h0 = ∅.

Public Belief: qt =
p0π(ht |H)

p0π(ht |H)+(1–p0)π(ht |L)
.

Private Interim Belief: p0t (s) =
p0PS(s|H)

p0PS(s|H)+(1–p0)PS(s|L)
. p0t ∼ PP.

Let b := inf supp(PP) > 0 and b̄ := sup supp(PP) < 1. (Recall: finite S.)
Private Posterior Belief:
pt(s) =

qtPS(s|H)
qtPS(s|H)+(1–qt)PS(s|L)

= qt p0
t /p0

qt p0
t /p0+(1–qt) (1–p0

t )/(1–p0)
=: BU(p0t , qt).

Action a’s Basin: Ira := {p ∈ [0, 1] | a = min(argmaxa′ p u(a′,H, r) + (1 – p) u(a′, L, r))}.
∃0 = p̂0 < p̂1 < p̂2 = 1 : Ir0 = [p̂0, p̂1], Ir1 = (p̂1, p̂2].
(Argument extends beyond binary actions)

Cascade Set for a: set of public beliefs at which agent chooses a regardless of
private information.
Jra := {q | BU(p, q) ∈ Ira, ∀p ∈ supp(PP)}.
∃0 = q̂r,–0 < q̂r,+0 < q̂r,–1 < q̂r,+1 = 1 : Jr0 = [q̂r,–0 , q̂r,+0 ] and Jr1 = (q̂r,–1 , q̂r,+1 ],
with BU(b, q̂r,–a ) = p̂ra and BU(b̄, q̂r,+a ) = p̂ra+1.
q ∈ Jra ⇐⇒ p̂a ≤ BU(b, q) < BU(p0, q) = q < BU(b̄, q) ≤ p̂a+1 =⇒ Jra ⊆ int(Ira).

Define Jr := ∪aJra.

Gonçalves (UCL) Social Learning 11



Setup
Cascade Sets and Other Definitions

Public History: ht = (aℓ)ℓ<t; h0 = ∅.

Public Belief: qt =
p0π(ht |H)

p0π(ht |H)+(1–p0)π(ht |L)
.

Private Interim Belief: p0t (s) =
p0PS(s|H)

p0PS(s|H)+(1–p0)PS(s|L)
. p0t ∼ PP.

Let b := inf supp(PP) > 0 and b̄ := sup supp(PP) < 1. (Recall: finite S.)
Private Posterior Belief:
pt(s) =

qtPS(s|H)
qtPS(s|H)+(1–qt)PS(s|L)

= qt p0
t /p0

qt p0
t /p0+(1–qt) (1–p0

t )/(1–p0)
=: BU(p0t , qt).

Action a’s Basin: Ira := {p ∈ [0, 1] | a = min(argmaxa′ p u(a′,H, r) + (1 – p) u(a′, L, r))}.
∃0 = p̂0 < p̂1 < p̂2 = 1 : Ir0 = [p̂0, p̂1], Ir1 = (p̂1, p̂2].
(Argument extends beyond binary actions)

Cascade Set for a: set of public beliefs at which agent chooses a regardless of
private information.
Jra := {q | BU(p, q) ∈ Ira, ∀p ∈ supp(PP)}.
∃0 = q̂r,–0 < q̂r,+0 < q̂r,–1 < q̂r,+1 = 1 : Jr0 = [q̂r,–0 , q̂r,+0 ] and Jr1 = (q̂r,–1 , q̂r,+1 ],
with BU(b, q̂r,–a ) = p̂ra and BU(b̄, q̂r,+a ) = p̂ra+1.

q ∈ Jra ⇐⇒ p̂a ≤ BU(b, q) < BU(p0, q) = q < BU(b̄, q) ≤ p̂a+1 =⇒ Jra ⊆ int(Ira).
Define Jr := ∪aJra.

Gonçalves (UCL) Social Learning 11



Setup
Cascade Sets and Other Definitions

Public History: ht = (aℓ)ℓ<t; h0 = ∅.

Public Belief: qt =
p0π(ht |H)

p0π(ht |H)+(1–p0)π(ht |L)
.

Private Interim Belief: p0t (s) =
p0PS(s|H)

p0PS(s|H)+(1–p0)PS(s|L)
. p0t ∼ PP.

Let b := inf supp(PP) > 0 and b̄ := sup supp(PP) < 1. (Recall: finite S.)
Private Posterior Belief:
pt(s) =

qtPS(s|H)
qtPS(s|H)+(1–qt)PS(s|L)

= qt p0
t /p0

qt p0
t /p0+(1–qt) (1–p0

t )/(1–p0)
=: BU(p0t , qt).

Action a’s Basin: Ira := {p ∈ [0, 1] | a = min(argmaxa′ p u(a′,H, r) + (1 – p) u(a′, L, r))}.
∃0 = p̂0 < p̂1 < p̂2 = 1 : Ir0 = [p̂0, p̂1], Ir1 = (p̂1, p̂2].
(Argument extends beyond binary actions)

Cascade Set for a: set of public beliefs at which agent chooses a regardless of
private information.
Jra := {q | BU(p, q) ∈ Ira, ∀p ∈ supp(PP)}.
∃0 = q̂r,–0 < q̂r,+0 < q̂r,–1 < q̂r,+1 = 1 : Jr0 = [q̂r,–0 , q̂r,+0 ] and Jr1 = (q̂r,–1 , q̂r,+1 ],
with BU(b, q̂r,–a ) = p̂ra and BU(b̄, q̂r,+a ) = p̂ra+1.
q ∈ Jra ⇐⇒ p̂a ≤ BU(b, q) < BU(p0, q) = q < BU(b̄, q) ≤ p̂a+1 =⇒ Jra ⊆ int(Ira).

Define Jr := ∪aJra.
Gonçalves (UCL) Social Learning 11



Not Socially Learning the Wrong Thing

Proposition

Fix θ = H. In any equilibrium, a fully wrong information cascade (qt → 0) a.s. never
starts.

Proof

Need to show wp1 qt > 0 ∀t and limt→∞ qt > 0.

Public Likelihood Ratio: l(qt) = (1 – qt)/qt.

Claim: Conditional on θ = H, l(qt) is a martingale.

E[l(qt+1) | ht, θ = H] = E

[
(1 – p0)πL(ht+1)

p0πH(ht+1)

∣∣∣∣∣ht, θ = H

]

= E

[
P(at | ht, θ = L)(1 – p0)πL(ht)

P(at | ht, θ = H)p0πH(ht)

∣∣∣∣∣ht, θ = H

]

= l(qt)
∑
a

P(at = a | ht, θ = H) P(at = a | ht, θ = L)
P(at = a | ht, θ = H)

= l(qt)

Note: qt is a martingale; conditional on θ = H it is a submartingale.
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Not Socially Learning the Wrong Thing

Proposition

In any equilibrium, a fully wrong information cascade a.s. never starts.

Proof

Need to show wp1 qt > 0 ∀t and limt→∞ qt > 0.

Public Likelihood Ratio: l(qt) = (1 – qt)/qt.

Claim: Conditional on θ = H, l(qt) is a martingale.

E[l(qt+1) | ht, θ = H] = l(qt)

l(qt) ≥ 0. By Doob’s martingale convergence theorem, conditional on θ = H, l(qt) →
l(q∞) < ∞ a.s.
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Information Cascades Happen

Theorem

In any equilibrium, an information cascade starts in finite time a.s.
66 Cascades and Herds

0
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Figure 4.2 Representation of a cascade. In each period, the middle of the vertical segment is
the public belief; the top and the bottom of the segment are the beliefs of an optimist (with a
private signal s = 1) and of a pessimist (with signal s = 0). The private signals are s1 = 0, s2 =
1, s3 = 0, s4 = 1, s5 = 1.

A GEOMETRIC REPRESENTATION

The evolution of the beliefs is represented in Figure 4.2. In each period, a segment
represents the distribution of beliefs: the top of the segment represents the belief of
an optimist, the bottom the belief of a pessimist, and the midpoint the public belief.
The segments evolve randomly over time according to the observations.

In the first period, the belief of an optimist, µ+
1 , is above c , while the belief of a

pessimist, µ−
1 , is below c . The action is equal to the signal of the agent and thus reveals

that signal. In the figure, s1 = 0, and the first agent does not invest. His information
is incorporated in the public information: the public belief in the second period,
µ2, is identical to the belief of the first agent: µ2 = µ−

1 . The sequence of the signal
endowments is indicated in the figure. When there is social learning, the signal of agent
t is integrated into the public information of period t + 1. By use of the notation of the
previous chapter, µt+1 = µ̃t .

Consider now period 5 in the figure: Agent 5 is an optimist, invests, and reveals his
signal, because he could have been a pessimist who does not invest. His information
is incorporated in the public belief of the next period, and µ6 = µ+

5 . The belief of
a pessimist in period 6 is now higher than the cost c (here, it is equal to the public
belief µ5). In period 6, the belief of an agent is higher than the cost of investment,
whatever his signal. He invests, nothing is learned, and the public belief is the same in
period 7: a cascade begins in period 6. The cascade takes place because all the beliefs
are above the cutoff level c . This condition is met here because the public belief µ6

is strictly higher than µ∗∗. Now µ6 is identical to the belief of an optimist in period
5, and the cascade occurs because the beliefs of all investing agents are strictly higher
than µ∗∗ in period 5. A cascade takes place because of the high belief of the last agent,
who triggers the cascade. Because this property is essential for the occurrence of an
informational cascade, it is important and will be discussed later in more detail.

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511616372.005 Published online by Cambridge University Press
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Information Cascades Happen

Theorem

In any equilibrium, an information cascade starts in finite time a.s.

Proof

Claim: supp(q∞) ⊆ [0, q̂+
0] ∪ [q̂–

1 , 1].

Suppose q∗ ∈ (q̂+
0, q̂

–
1 ) ∩ supp(qt) =⇒ ∀ε > 0, P(q∞ ∈ (q∗ – ε, q∗ + ε)) > 0.

Hence wp>0 ∃T < ∞ : ∀t ≥ T, qt ∈ (q∗ – ε, q∗ + ε).
Take ε arbitrarily small. (q∗ – ε, q∗ + ε) ⊂ (q̂+

0, q̂
–
1 ), an active learning region.

In the active learning region, prob agent takes 0 or 1 is different depending on the
true state, and so P(at = 1 | qt, θ = H) ̸= P(at = 1 | qt, θ = H).

at = 1 =⇒ qt+1 > qt and at = 0 =⇒ qt+1 < qt.
Changes are discrete, so can find small ε > 0 s.t. exit (q∗ – ε, q∗ + ε) wp>0 starting
from qt ∈ (q∗ – ε, q∗ + ε). Contradiction.
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Information Cascades Happen

Theorem

In any equilibrium, an information cascade starts in finite time a.s.

Proof

Claim: P(q∞ = q̂–
1 ) = 0.

Suppose P(q∞ = q̂–
1 ) > 0.

Hence for positive prob sample of paths qt ↑ q̂–
1 .

=⇒ for any ε > 0, wp>0 ∃T < ∞ : ∀t ≥ T, qt ∈ (q̂–
1 – ε, q̂–

1 ].
Note at = f(st, qt), hence supp(qt+1 | qt = q) is independent from t.

=⇒ qt+1 is time-homogeneous Markov process.
For small enough ε, one has ∀qt ∈ (q̂–

1 – ε, q̂–
1 ] =⇒ (at = 0 ⇐⇒ st = 1).
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Information Cascades Happen

Theorem

In any equilibrium, an information cascade starts in finite time a.s.

Proof

We have supp(q∞) ⊆ Jr . It remains to be shown that a.s. ∃T < ∞ : ∀t ≥ T, qt ∈ Jr .

Note Jr = int Jr ∪ {q̂+
0}. Let B = [0, 1] \ int Jr .

Then, since q∞ ∈ Jr and B closed =⇒ either (a) ∃t < ∞ : qt ∈ int Jr or (b) ∀t, qt ∈
B =⇒ q∞ ∈ B =⇒ q∞ = q̂+

0.

If (a), done. Suppose (b).

WTS that, on event {q∞ = q̂+
0}, a.s. ∃T < ∞ : ∀t ≥ T, qt = q̂+

0.
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qtPS(NS |H)+(1–qt)PS(NS |L)

> qt and, since qt is martingale,

at = 0 =⇒ qt+1 = qt(1–PS(NS |H))
qt(1–PS(NS |H))+(1–qt)(1–PS(NS |L))

< qt.

Can take ε > 0 small enough s.t. also (q̂+
0+ε)(1–PS(NS |H))

(q̂+
0+ε)(1–PS(NS |H))+(1–(q̂+

0+ε))(1–PS(NS |L))
< q̂+

0.

And can take ε > 0 small enough s.t. also q̂+
0PS(NS |H)

q̂+
0PS(NS |H)+(1–q̂+

0)PS(NS |L)
> q̂+

0 + ε.

Hence, for small enough ε, qt ∈ (q̂+
0, q̂

+
0 + ε) =⇒ qt+1 /∈ (q̂+

0, q̂
+
0 + ε). Contradiction.

Done!
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Wrong Cascades Happen

Theorem

In any equilibrium, for p0 /∈ Jr , a wrong information cascade starts wp> 0.

It is possible everyone unwittingly just takes the suboptimal action!

This is despite the fact every period new information arives.

Markets can get it very wrong due to informational externalities.
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Wrong Cascades Happen

Theorem

In any equilibrium, for p0 /∈ Jr , a wrong information cascade starts wp> 0.

Proof

Consider θ = H; symmetric for θ = L.

Jr is absorbing/steady state set: qt ∈ Jr =⇒ qt+1 = qt.

τ := inf{t ≥ 0 | qt ∈ Jr} = inf{t ≥ 0 | l(qt) /∈ (l(q̂+
0), l(q̂

+
1 )]}.

Let wH := P(q∞ ∈ Jr0 | θ = H) = P(l(q∞) ∈< l(q̂+
0) | θ = H);

l0,∞ = E[l(q∞) | θ = H, q∞ ∈ Jr0]; and l1,∞ = E[l(q∞) | θ = H, q∞ ∈ Jr1].

l(qt) is martingale =⇒ by Doob’s optional stopping theorem,
l(p0) = E[l(qτ)|θ = H] = wHl∞,0 + (1 – wH)l1,∞.

Finally: p0 /∈ Jr =⇒ l0,∞ < l(q0) < l1,∞ =⇒ wH > 0.
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Robustness of Cascades

Smith and Sørensen (2000 Ecta) ask how robust are the results
‘Crazy’ action/person; need to ‘ignore deviation’.
Agent with different preferences; others may still learn from their actions.
Agent has more precise information; contrarian action.

Gonçalves (UCL) Social Learning 22



Robustness of Cascades

‘Crazy type’ m ∈ A:
Always plays action m. (e.g., preference s.t. strictly dominant to play m)
Arrives with probability Kκm ≥ 0, where κm,K ∈ [0, 1] and

∑
m∈A κm = 1.

‘Rational type’ r ∈ R = {1, ...,NR}:
Type r determines preference u(a, θ, r).
Arrives with probability (1 – K)ρr > 0.
Nr
A non-weakly dominated actions.

Order actions ar1, ..., aNr
A
s.t. u(ar1,H, r) < ... < u(aNr

A
,H, r).

Ira, Jra, etc. all defined the same.

Cascade from t if qt ∈ J := ∩rJr . Common knowledge we’re in a cascade.

Limit cascade q∞ ∈ J.
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Robustness of Cascades

Private Interim Beliefs:
Private beliefs bounded if 0 < b < b̄ < 1; unbounded if 0 = b < b̄ = 1.
(Recall b̄ = sup suppPP and b = inf suppPP.)

Pθ

P(·) = PP(· | θ). Assume PH
P and PL

P mutually abs. continuous (no fully-revealing
signals wp> 0).

Immediate that with unbounded private beliefs, Jrar
1
= {0} and Jrar

Nr
A

= {1}, and for other

actions Jra = ∅.
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Robust and Less Robust Results

Theorem

A fully wrong information cascade a.s. never starts.
Condition on θ = H.
(a) With a single ‘rational type’, a not-fully-wrong limit cascade occurs a.s.

(b) With a single ‘rational type’ and unbounded private beliefs there is complete learn-
ing: qt → 1{θ=H} a.s.

(c) With bounded private beliefs and qt /∈ J, a wrong limit cascade happens with
positive probability.

(d) Letting the support of private beliefs [bn, bn] → [0, 1], the chance of a wrong limit
cascade vanishes (continuity at the limit).
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Robust and Less Robust Results

Cascade a.s. in finite time artefact of finite S
For generic atomless PP, prob contrarian agent becomes vanishingly small when
public belief tends to cascade set.

Hence, from martingale property, variation in public belief converges to zero
Public belief never actually reaches the cascade set. (see Chamley 2010 Ch. 4.2.)

Herds vs Cascades
Limit cascade implies herd (with finite A).
Can have herd without a cascade being triggered.

Herd is triggered a.s. in finite time.

Fragile Herds
Cascades tend to be fragile wrt small shocks.
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Overview

1. Social Learning: Checking Neighbours’ Crop Yields

2. Warm-Up: Gaussian-Quadratic Model

3. Information Cascades

4. Further Topics



Further Topics
Social Non-Learning, See Kartik, Lee, Liu, and Rappoport (2024 Ecta).

Binary state: Except when private beliefs are unbounded, learning is not complete
and may herd on wrong action.

Multiple states: unbounded beliefs okay; weaker condition on info + condition on
preferences is sufficient
(intermediate preferences and subexponential location-shift information).

Heterogeneous Precision and Order of Moves
Ottaviani and Sørensen (2001 JPubE): Social learning + reputation concerns.
Study order of moves.

Holding aggregate precision fixed, better to have it concentrated in single person.
The anti-seniority rule not necessarily optimal.
Increasing the precision of agent can harm.

Limited Observability
Random sample of past actions (Smith and Sørensen, 2020). Smaller samples
can improve efficiency (Chamley 2020, Ch. 5).

Ability to observe others’ actions/payoffs may cause insufficient exploration. E.g.,
favourable reviews deter exploration (Acemoglu, Makhdoumi, Malekian, and
Ozdaglar (2022 Ecta)).
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Further Topics

Endogeneous Timing in BHW model often just expands set equilibria.
See Chamley and Gale (1994 Ecta), Chamley (2010 Ch. 6).
See also Gul and Lundholm (1995 JPE), Caplin and Leahy (1994 AER).

Overconfidence can help (Bernardo and Welch (2001 JEMS); Arieli, Babichenko, Müller,
Pourbabaee, and Tamuz (2024)).

Correlation neglect can harm (Eyster and Rabin (2010 AER)).

Non-EU Maximising
Uncertainty wrt others’ signal precision and uncertainty aversion can deter
breaking cascades even in unbounded private beliefs case (Chen (2025 AER)).
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Further Topics

Costly Info
Ali (2018 JET): Flexible info.
Complete learning with finite A and costly signals iff P(cost ≤ ε) > 0 for any ε > 0.
Similar insight to unbounded beliefs. Also similar result if agents pay search costs
for history (Mueller-Frank Pai (2016 AEJMicro)).

Changing State
Levy, Pęski, and Vieille (2024 Ecta).
Population each period. Agents sample actions from previous period and can
acquire costly private signal.

At eqm, always acquire private signal and learning incomplete even with very
precise signals.

(See also Dasaratha, Golub, and Hak (2023 REStud) for changing state + networks)

More: Social learning in markets, networks, contracting, ...
See Bikhchandani, Hirshleifer, Tamuz, and Welch (2024 JEL).
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Further Topics

Testing for Social Learning
Technology adoption: wheat and rice varieties in India (Foster and Rosenzweig
1995 JPE, Munshi 2004 JDevE), new crop adoption in Mozambique (Bandiera
and Rasul 2006 EJ), pineapple in Ghana (Conley and Udry 2010 AER), maize in
Malawi (BenYishay and Mobarak 2019 REStud), microfinance in India (Banerjee,
Breza, Chandrasekhar, Duflo, Jackson, and Kinnan 2024 REStud).

(Testing of diffusion and social learning was a hot topic in the field/dev RCT
revolution.)

Social learning on networks: Mobius, Phan, and Szeidl (2015 NBER WP);
Chandrasekhar, Larreguy, and Xandri (2020 Ecta).

Correlation neglect: Enke and Zimmermann (2019 REStud); Angrisani, Guarino,
Jehiel, and Kitagawa (2018 AEJMicro).

Metastudy of experiments: Weizsäcker (2010 AER)
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